Computational model for multiscale simulation of laser ablation

نویسنده

  • Leonid V. Zhigilei
چکیده

Multiscale computational approach that combines different methods to study laser ablation phenomenon is presented. The methods include the molecular dynamics (MD) breathing sphere model for simulation of the initial stage of laser ablation, a combined MD finite element method (FEM) approach for simulation of propagation of the laser-induced pressure waves out from the MD computational cell, and the direct simulation Monte Carlo (DSMC) method for simulation of the ablation plume expansion. The multiscale approach addresses different processes involved in laser ablation with appropriate resolutions and, at the same time, accounts for the interrelations between the processes. A description of the ablation plume appropriate for making a connection between the MD simulation of laser ablation and the DSMC simulation of the ablation plume expansion is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Modeling of Laser Ablation: Applications to Nanotechnology

Computational modeling has a potential of making an important contribution to the advancement of laser-driven methods in nanotechnology. In this paper we discuss two computational schemes developed for simulation of laser coupling to organic materials and metals and present a multiscale model for laser ablation and cluster deposition of nanostructured materials. In the multiscale model the init...

متن کامل

Multiscale simulation of laser ablation of organic solids: evolution of the plume

A computational approach that combines the molecular dynamics (MD) breathing sphere model for simulation of the initial stage of laser ablation and the direct simulation Monte Carlo (DSMC) method for simulation of the multi-component ablation plume development on the timeand length-scales of real experimental configurations is presented. The combined multiscale model addresses different process...

متن کامل

A FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete

This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...

متن کامل

Computational Simulation of Ablation Phenomena in Glass-filled Phenolic Composites

A one–dimensional, transient and thermal degradation model for predicting responses of composite materials when are exposed to the fire is presented. The presented model simulates ablation of composites with different layers of materials and considers material properties as functions of temperature. The reactions are modeled by using Arrhenius-type parameters and density-temperature diagram...

متن کامل

Application of M3GM in a Petroleum Reservoir Simulation

Reservoir formations exhibit a wide range of heterogeneity from micro to macro scales. A simulation that involves all of these data is highly time consuming or almost impossible; hence, a new method is needed to meet the computational cost. Moreover, the deformations of the reservoir are important not only to protect the uppermost equipment but also to simulate fluid pattern and petroleum produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001